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Today’s goal

• Categorical predicate transformer semantics 

• unifying [Hasuo 2014] and [Jacobs CALCO 2015]  
with relative algebra 

• enabling formulation of healthiness condition 

• Extension to the alternating cases
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Predicate Transformer 
Semantics

Interpreting a computation (= a Kleisli arrow)  
as a backward predicate transformer
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nondet. program predicate transformer

2X  � 2Y

must

{x 2 X | 8y 2 f(x). y 2 S} � [ S ✓ Y

X
f����! PY
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Remark: There might be multiple choices of  
PT semantics for a single type of branching. 
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{x 2 X | 8y 2 f(x). y 2 S}
 � [ S ✓ Y

{x 2 X | 9y 2 f(x). y 2 S}
 � [ S ✓ Y

must

may

X
f��! PY
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Probabilistic Example
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Healthiness condition

Healthiness condition: what kind of predicate 
transformer comes from a Kleisli arrow? 

e.g. 

In other words, 
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Thm. for ' : 2

Y ! 2

X
,

' = P⌃
(f) for some f : X ! PY () ' is join-preserving

P⌃ : K`(P) �! CLopW

(X ! PY ) 7! (2X  2Y )
is well-defined & full.
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Categorical understandings 
of PT semantics
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Recipe 1: adjunction recipe 
[Jacobs CALCO 2015]

Observation: we have a decomposition: 
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PX �! [2X , 2]W

S 7! (� 7!
_

x2S

�(x))

Set
2

(�)

,,
P⇠
=

[2

(�),2]W
88 CLopW

[�,2]W
kk ?
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then we have 

and the resulting functor  
is fully faithful (since so is comparison functor K), 

→ healthiness condition!

9

K`(P)
K`(�)
⇠
=

// K`
�
[2(�), 2]W

� K //

$$

(CLW)op

rrSet

ee
55

a a

(X 7! PY )
P⌃

7��������������������! (2Y ! 2X)

K`(P) �! (CLW)op
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Key: decomposing a monad into a dual adjunction 

✓ healthiness condition for free  
✗  decomposition is hard to find 
✗  hiding the use of modality (e.g. may vs. must)

Summary of adjunction recipe
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Recipe 2: modality recipe
Observation: modality = Eilenberg-Moore algebra  
[Moggi 1991, Hasuo 2014] 

e.g. May-modality (for powerset) 
       =                 (join-semilattice structure) 

Using this “modality”, we can define PT semantics as 
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P2
W
�! 2

P⌃ : K`(P) �! Setop

(X
f�! PY ) 7! (2X  2Y )

Y
�����! 2

PY
P�
// P2W
✏✏

X //
f
OO
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Summary of modality recipe

Key: Use of modality = EM-algebra over truth values

✓ concrete description of PT semantics  
✓ able to distinguish “must vs. may”  
    (as choice of                or               )  
✗ domain of interpretation is restricted to  
✗ too loose to acquire healthiness result

12

P2
W
�! 2 P2

V
�! 2

Set
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Problem
• How to unify these 2 approaches? 

• adjunction recipe & modality recipe 

• we want to get 

• precise healthiness result 

• concrete description of semantics by modality
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Key observation

A modality                  defines Set-valued semantics 

since     is a set.
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T⌦
⌧�! ⌦

⌦

K`(T ) �! Setop

X 7�! ⌦X

X-fold product of Ω
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To acquire 

we want T-algebra whose underlying space is in D. 

⇒ How to formalize it?
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D

Kl(P) �! Dop
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Equivalent formulation of 
Eilenberg-Moore algebra
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Thm (Kelly?). T : monad on Set, A : set, then

↵ : TA ! A : EM-alg

↵]
: T ! Set(A(�), A) : monad map

Set
A(�)

,,
Set(A(�),A) 88 Setop

A(�)

kk ?
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Universal algebraic perspective
The monad map can be understood as: 
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↵]
X : TX �! Set(AX , A)

t 7�! ↵]
X(t)

term over X its interpretation 
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Relative algebra
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Def. (D : complete cat.)

a D-relative T -algebra is a pair (A,↵) where

• A 2 D

• ↵ : T ! D(A(�), A) : monad map

Set
A(�)

++
D(A(�),A) 88 Dop

D(�,A)

kk ?
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Relative algebra recipe
Ingredient:      : complete category (for predicates)  
                              : relative  T-algbera (modality) 

 
then we can define PT-semantics as
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X �! TY in Set
X ! TY ! D(⌦Y ,⌦)

⌦Y �! ⌦X in D

D

T ! D(⌦(�),⌦)

(⌦, ⌧)

K`(T )

P⌧

✏✏

Dop
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Healthiness result
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Recall we have P⌧ : K`(T ) ! Dop for relative T -alg (⌦, ⌧).

Thm (Healthiness result).
P⌧
X,Y : K`(T )(X,Y ) ! D(⌦Y ,⌦X) is surjective (injective)

if ⌧Y : TY ! D(⌦Y ,⌦) is surjective (injective)
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Problem of relative algebra

• Too abstract, difficult to construct explicitly 

• to define a relative algebra, we need a natural 
transformation = large amount of data 

• cf.) a T-algebra = an object & a morphism
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(A : D-object, ⌧ : T ! D(A(�), A))
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Construct a relative algebra
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Assume UD : D ! Set : faithful and continuous

Thm. there is a bijective correspondence

a D-relative T -algebra

AD 2 D and TA
a�! A subject to

• UD(AD) = A

• satisfies the following lifting condition:

D(AX
D , AD)

UD

✏✏

TX
a]
X

//

9a]
X

99

Set(AX , A)
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Examples
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(These results are already known)

• ⌧⌃ : P2

W
�! 2 induces CLW

-relative algebra,

with ⌧ ]⌃ : P ! [2

(�), 2]W an isomorphism.

�! P⌧⌃
= P⌃

is fully faithful.

• ⌧ =

R
: D[0, 1] ! [0, 1] induces EMod-relative algebra,

and ⌧ ] : DX ! EMod([0, 1]X , [0, 1]) is bijective when X finite.

�! healthiness for finite states holds.
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Summary of 
relative algebra recipe

• introduced new categorical formulation of PT 
semantics, unifying our two works  
 
✓ fine enough to explain helathiness condition from 
categorical point of view  
 
✓concrete description using “modality”

24



Wataru Hino (Tokyo)

Missing Link

• We have defined a functor: 

• It only involves Kleisli category, 
with Eilenberg-Moore category missing.
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P⌧ : K`(T ) �! Dop

(X ! TY ) 7! (⌦X  ⌦Y )
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In fact, it is a part of larger picture (if D is complete) 
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Dop

[�,⌦]D
,,

> EM(T )
[�,⌦]T

ll

K`(T )P⌧

[[

K

__

State-and-effect triangle 
[Jacobs]

D
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More details
Setting:  

• We have dual adjunction 

• “over” Hom-functors (into       ) 

• Factors through  
i.e. the following commutes.
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Dop

[�,⌦]D
,,

> EM(T )
[�,⌦]T

ll

“⌦”

P⌧ : K`(P) �! Dop

Dop

[�,⌦]D
,, EM(T )

K`(T )P⌧

[[

K

__

Dop

[�,⌦]D
,,

> EM(T )
[�,⌦]T

ll

K`(T )P⌧

[[

K

__

D : complete and concrete,

⌦ = (⌦, ⌧) : D-relative T -algebra

then we have
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Why is this important?

We will use it for alternating branching case!
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Alternating branching
• mixing 2 types of branching 

• nondet. & nondet. (player vs. opponent) 

• nondet. & prob. (opponent vs. environment) 
[Morgan, McIver, Seidel 1996] 

• formulated in [Hasuo 2014] as 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SetR?T=URF 88

F
,,

? EM(T )
U

ll R  

SetT 88 first movesecond move

alternating branching
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Modalities for alternation
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SetT 88Branching SetR?T=URF 88

F
--

? EM(T )
U

kk R  

Modality

Dop

D(�,A)

��
?

Set

A(�)

GG

⌧ : T!D(A(�),A)

ZZ

Dop

[�,⌦]D
��

?

EM(T )

[�,⌦]T

GG

⇢ : R![[�,⌦]T ,⌦]D

WW

Non-alternating Alternating

Dop

[�,⌦]D
,,

> EM(T )
[�,⌦]T

ll

K`(T )P⌧

[[

K

__
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Results
• Using these two modalities, 

we have a PT-semantics: 

 

• Its healthiness result is in the paper.
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P⌧,⇢ : K`(R ? T ) �! Dop

modalities for
2nd branching

1st branching
⌧ : T ! D(A(�), A)

⇢ : R ! [[�,⌦]T ,⌦]D
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Summary of 
the alternting cases

• A dual adjunction between     and 

• a part of a state-and-effect triangle 

• Our result naturally extends to the alternating cases 

• using the dual adjunction above 
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D EM(T )



Wataru Hino (Tokyo)

Future works

• Investigate relative algebra

• especially its connection to Lawvere theory 

• Extend result to enriched settings (cf. [Keimel 2015])
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